Aquaculture

Microscope image of fish larvae with internal detritus visible

Resolving the Diet of Larval Marine Fishes to Accelerate Aquaculture Opportunities

PI: Brian Bowen
Demand for sea food increases while wild stocks dwindle, but marine aquaculture efforts struggle to raise fish larvae due to their highly selective, yet undetermined, food preferences. This project applies innovative DNA barcoding of larval intestinal contents to determine typical diets and thus enhance aquaculture opportunities to provide sustainable fish stocks.
Map view image showing 2/3 of pond-ringing mangrove removed between 2007 and 2017 and project sampling sites

Microbial biogeochemical cycling across a chronosequence of mangrove introductions across Hawaiʻi

PI: Rosanna Alegado
Invasive mangroves harm Hawaiian coastal ecosystems, choking native plants, providing footholds for invasives, and generating leaf litter mounds inedible to Hawaiian species. This study investigates whether microbial communities can evolve to tackle the detritus and examines the resilience of our coastal ecosystems to mangrove invasion.
Farming Fish

Farming Fish

Scenic picture of Hawaiian fishpond.

Hehihehi management for microbial-mediated sediment removal in fishponds

PI: Kiana Frank
This study employs the modern tools of microbiology to examine the efficacy of a traditional management tool applied to today’s fishpond restoration efforts. The researcher is examining whether microbes may decompose pond-clogging sediment faster if aided by hehihehi, the traditional practice of stomping and mixing of the fishpond sediment.
Photo of Heeai Fishpond wall.

Integration of next-generation sequencing into traditional Hawaiian practices to improve management and restoration of fishponds

PI: Robert Toonen
With Hawaiian fishponds as models of sustainable aquatic resource management, this study uses two important crab species, Portunus sanguinolentus hawaiiensis and Scylla serrata, to explore whether fishponds are self-seeding, importing, or exporting species, and whether traditional harvest practices continue to be viable. Early results show a broad diversity of crab sizes, with a possibility of tagging and tracking crabs outside the fishpond, as well as within.