PI: Brian Popp
This study focused on quantifying respiration, pumping rates, and chemical reactions of an invasive sponge, Mycale grandis, to understand the species’ impacts on nitrogen cycling in the coastal environment of Kāne‘ohe Bay, whether adding or subtracting usable nitrogen from the system. Researchers found that the M. grandis sponge can pump 83 times its own volume of water per day, giving its associated microbial communities abundant opportunity to perform nitrification, converting ammonia to forms of nitrogen oxides unusable to algae. The rapid nitrogen transformations with the high pumping rates of these sponges means this invasive species may play a significant role in nitrogen concentrations in the bay.
This study focused on quantifying respiration, pumping rates, and chemical reactions of an invasive sponge, Mycale grandis, to understand the species’ impacts on nitrogen cycling in the coastal environment of Kāne‘ohe Bay, whether adding or subtracting usable nitrogen from the system. Researchers found that the M. grandis sponge can pump 83 times its own volume of water per day, giving its associated microbial communities abundant opportunity to perform nitrification, converting ammonia to forms of nitrogen oxides unusable to algae. The rapid nitrogen transformations with the high pumping rates of these sponges means this invasive species may play a significant role in nitrogen concentrations in the bay.