

- The State of Hawai'i ranks #8 is U.S. aquaculture (2017 Census of Agriculture)
- Hawai'i aquaculture sales in 2021: \$79.7 million (2022 NASS, USDA)
 - Algae: \$36.7 million
 - Ornamentals: \$3.62 million
 - "Other": \$39.3 million

Commercial feeds support the production of aquaculture products worth ±\$40 million?

Hawai'i county is a top aquaculture producer: #3 in the country

E CENSUS OF County Profile

Market Value of Agricultural Products Sold

Total	Sales (\$1,000) 269,188	Rank in State ^b	Counties Producing Item 4	Rank in U.S. b	Counties Producing Item 3,077
	200,100	•	•	020	0,011
Crops	160,040	1	4	256	3,073
Grains, oilseeds, dry beans, dry peas	-	-	3	-	2,916
Tobacco	-	-	-	-	323
Cotton and cottonseed	-	-	-	-	647
Vegetables, melons, potatoes, sweet potatoes	15,581	2	4	154	2,821
Fruits, tree nuts, berries	92,832	1	4	44	2,748
Nursery, greenhouse, floriculture, sod	50,289	1	4	56	2,601
Cultivated Christmas trees, short rotation	(5)		,	(-)	
woody crops	(D)	1	4	(D)	1,384
Other crops and hay	(D)	2	4	(D)	3,040
Livestock, poultry, and products	109,148	1	4	462	3,073
Poultry and eggs	118	3	4	1,006	3,007
Cattle and calves	23,289	1	4	693	3,055
Milk from cows	(D)	1	1	(D)	1,892
Hogs and pigs	(D)	4	4	(D)	2,856
Sheep, goats, wool, mohair, milk	523	2	4	329	2,984
Horses, ponies, mules, burros, donkeys	417	1	4	515	2,970
Aquaculture	59,261	1	4	(3)	1,251
Other animals and animal products	14,244	1	4	10	2,878

The Big Island is a national leader in Aquaculture, we should praise the achievement more often.

Least cost approach in feed formulation

- Animals in intensive aquaculture are farmed using commercial feeds
- Ingredients need to fulfill three requirements:
 - a) Nutritional quality (good to high, right mix of nutrients)
 - **b)** Availability (high, enough to sustain the industry)
 - c) Cost (low)

Aquafeed ingredients research in Hawai'i

Oceanic Institute

- In 2012 published manuals for the manufacture of tilapia feeds using local ingredients (CTSA, USDA)
- Abalone feed formulation (CTSA, USDA)

Manufacturing Tilapia Feed

A Manual Using Local Feedstuff Resources for Fish Farming in American Samoa

Warren Dominy, Lindon Hansink, Lytha Conquest, Ward Kashiwa and Gavin Nague Aquatic Feeds and Nutrition Department
Oceanic Institute. Makapu'u Point, Waimānalo, USA

Darren Okimoto and Ephraim Temple University of Hawai'i Sea Grant College Program School of Ocean and Earth Science and Technology University of Hawai'i at Mānoa, Honolulu, USA

Francis Leiato Community and Natural Resources American Samoa Community College Pago Pago, AS

https://repository.library.noaa.gov/view/noaa/41174

Oceanic Institute

- In 2014, 17 ingredients from Oahu and the Marshall Islands tested for tilapia feeds (94% local ingredients) (CTSA, USDA)
- In 2017, 30 ingredients were tested for use in shrimp feeds (CTSA, USDA)

Table 1. Proximate contents and gross energy values for selected local feed ingredients.

	<i>B</i>	Crude	le		
	Dry	Protein	Crude Lipid	Ash	Gross
Local Ingredient	Matter %	%	%	%	Energy Cal/g
Ahi byproduct	92.9	67.8	14.1	13.1	4957
Azolla	94.1	19.9	1.8	11.6	3869
Banana with skin	92.0	2.3	1.9	5.0	3576
Banana without skin	92.4	2.8	0.2	2.9	3598
Bread Fruit with skin	93.4	2.9	1.3	2.9	3691
Breadfruit w/out skin	93.0	1.8	1.0	2.9	3651
Camelia Presscake	91.1	36.7	15.4	4.1	4797
Cassava	94.9	1.6	0.4	1.3	3821
Cassava internal	98.9	3.3	2.7	2.9	3990
Cassava skin	99.0	10.1	4.5	4.1	4145
Copra meal	94.6	23.0	11.3	5.6	4576
Defatted Hematococuss	94.5	40.3	0.9	12.8	4082
Dried restaurant waste	97.0	24.9	12.3	12.7	4813
Duckweed	94.3	12.8	5.8	23.5	3416
Fish byproduct	98.8	69.7	6.2	21.9	4413
Macadamia nut	98.6	10.0	70.3	1.0	7474
Pongamia oil seed	94.3	20.8	33.6	2.3	5870
Pongamia presscake	92.3	28.4	11.7	3.3	4690
RMI Breadfruit Raw	98.1	7.0	1.7	2.0	3373
RMI Fermented					
Breadfruit	99.9	1.8	1.4	1.5	4101
RMI Fishmeal	97.3	58.9	8.6	21.4	4344
RMI Rabbitfish	96.9	62.2	9.7	15.7	4436
RMI Swamp Taro	98.3	6.6	2.4	8.5	4161
Salvinia	95.2	28.2	4.5	9.4	4258
Samoa Fishmeal	92.6	63.0	7.6	19.6	4409
Spirulina	91.9	53.7	3.5	9.4	4251
Taro Hawaii	98.4	3.7	0.9	2.3	3916
White fish byproduct	94.3	64.4	16.5	14.9	5005
Whole Camelia seed	89.9	29.3	15.9	5.4	4603

Aquafeed.com

 In 2018, a supplemental tilapia feed made with fish processing waste to replace up to 50% of dietary protein (S-K, NOAA)

Hawaii Feed & Fertilizer LCC

 In 2020, local fishmeal plant using fish processing waste (S-K, NOAA)

UH Hilo

• In 2016, up to 15% of total feed weight from defatted *Haematococcus* pluvialis successfully tested in *Seriola rivoliana* (kanpachi) (PBARC, USDA)

Ol and UH Hilo

- In 2018, two tilapia feeds made with low and high fat content (>50% locally sourced ingredients) (CTSA, USDA)
- Two sinking feeds and two floating feeds for moi were tested (CTSA, USDA)
- First feeds made at the OI feed mill in Hilo

Tilapia small scale trial results at UH Hilo 2018

	Ol Tilapia Feed #1	OI Tilapia Feed #2	Rangen commercial feed
Feed cost \$/ <mark>lb</mark>	\$0.43*	\$0.44*	\$1.06
Feed protein content (%)	37%	37%	35%
Initial fish weight (g)	1.4	1.4	1.1
Final fish weight (g)	27.3	37.4	34.7
Weight gain (g)	25.9	36.0	33.6
Specific growth rate (%/day)	4.3	4.8	4.9
Growth rate (g/day)	0.4	0.5	0.5
FCR	1.1	1.0	1.1
Survival (%)	100	100	100

^{*}Costs only include the ingredients

García-Ortega and Ju, 2018

UH Hilo and CTAHR

- In 2020 reported 75% replacement of FM, SPC and FO by algal meals (Spirulina, Schizochytrium) in feeds for tilapia (PBARC, USDA)
- That is 61% of total feed weight

YEAST MEAL

CTAHR and UH Hilo

- In 2021, yeast made with papaya waste was tested in feeds for tilapia (CTSA, USDA)
- Up to 25% of FM can be replaced by yeast
- That is 12% of the total feed weight

Current work

- Double-hydrolyzed black soldier fly larvae meal (CTAHR and UH Hilo)
- Seaweed extracts, whole seaweed meals (Ocean Era)
- Economic feasibility of aquaculture feeds in Hawai'i (Hawaii Sea Grant and CTSA)
- Locally made abalone feeds (UH Hilo and Big Island Abalone)

- Adequate nutritional quality in some local ingredients √
- Availability is still a challenge (limited agriculture production in Hawai'i)
- Lack of feedstuffs processing (e.g. drying, grinding) and storage facilities
- Cost of ingredients may still be high (need for Ag grade products e.g. *Spirulina*)
- Keep in mind manufacturing commercial aquafeeds is a business!

Thanks to our collaborators and funding agencies

CENTER FOR TROPICAL AND SUBTROPICAL **AQUACULTURE**

COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES

UNIVERSITY OF HAWAI'I AT MĀNOA

Mahalo for your attention

Armando García-Ortega, Ph.D.

College of Agriculture, Forestry and Natural Resource Management
University of Hawai'i at Hilo
(808) 932-7031
agarciao@hawaii.edu