

Maximizing Taro (Colocasia esculenta L.) Corm Production in Aquaponics through Manipulation of Water Quality Late in the Vegetative Growth Stage.

Bradley "Kai" Fox¹, Theodore J.K. Radovich^{1,2}, Neil Tsukayama¹, Paul Silva¹, Jane Chung-Do^{1,2}, Ilima Ho-Lastimosa^{1,2}, Phoebe Hwang¹, LeShay Keli'iholokai^{1,2}, Ikaika Rogerson², Kirk Deitchman², Kenneth K. Ho².

¹University of Hawai'i at Mānoa; ²Ke Kula Nui o Waimānalo

INTRODUCTION

- ◆ Aquaponics has been widely adopted in Hawaiian communities as a culturally relevant method of home food production.
- ◆ Taro (*Kalo* in Hawaiian) is a traditional Hawaiian staple crop that does well vegetatively in aquaponics, but does not produce corms of commercially acceptable size.
- ◆As part of a larger community driven project (malamaaquaponics.org), we tested the hypotheses that low kalo corm yields were due to excessive water nitrogen levels late in vegetative development that hinders corm development.

APPROACH

The kalo cultivar 'Maui Lehua' was planted in a randomized complete design with six replications in specially designed dualtub systems that allowed for the application of two treatments:

1) fish effluent supplied throughout 8 months of plant development (control) and 2) Fish effluent restricted from the system at 4 months and fresh water supplied for the remaining 4 months of development (restricted).

RESULTS

Figure 1. Illustration of taro development cycle

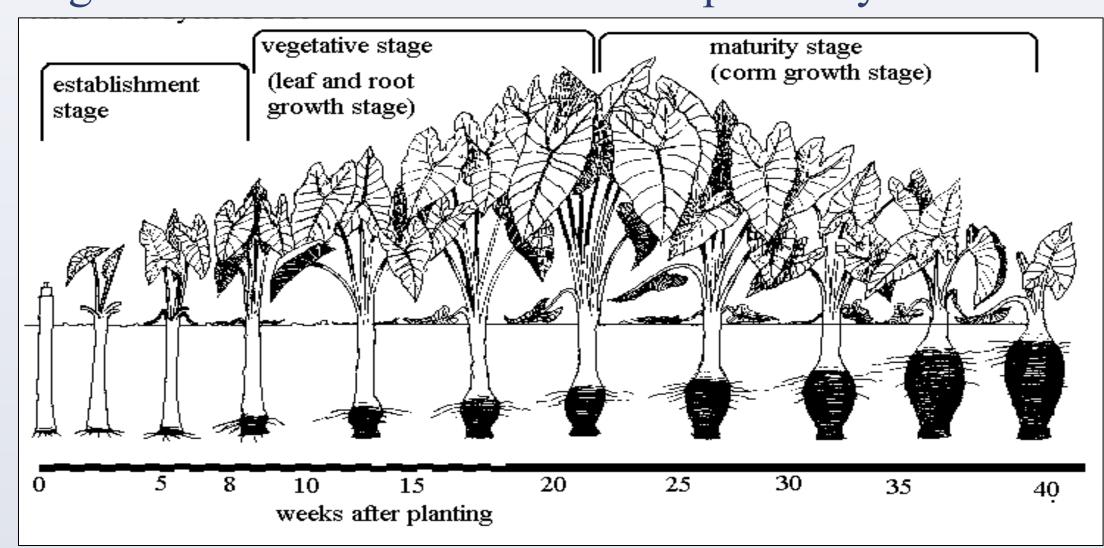


Figure 2. Plant biomass of treatments

Figure 3. Corm weight as a percentage of total biomass

RESULTS

- ◆ The ratio of corm to total biomass is a key indicator of plant maturity (Figure 1).
- ◆ Control plants produced significantly more biomass than restricted plants (Figure 2).
- ◆ Restricted plants had significantly more biomass partitioned to the corm (62% of total biomass) relative to control plants (22% of total biomass) (Figure 3).
- This suggests that we were partially successful in transitioning photosynthate partitioning to the corm.
- ◆ However, individual weights of the primary corm were statistically similar between treatments (376-406g·plant⁻¹)
- ◆ This is still low compared to recorded yields in terrestrial systems (>1kg).
- ◆ Modifications to the system are being made to address observed deficiencies in potassium and iron in plants of both treatments, and total time to harvest will be increased.
- ◆ For more information on tis and other Academic/Community partnerships, visit: http://www.kekulanuiowaimanalo.org/

FUNDING

This research has been funded by a RWJF Interdisciplinary Research Leaders Fellowship award and the Hawaii Department of Agriculture.