COE_icon_CCSR
CENTER FOR COASTAL AND CLIMATE SCIENCE AND RESILIENCE

PROJECTS

A next generation beach observing system for Hawaiʻi

PI: Charles Fletcher
With sea-level rise impacting Hawaiian coasts, this project aims to develop a next-generation program for monitoring short and long-term changes in Hawaiian shorelines, employing recent technologic advances to enhance the efficiency and data quality of beach surveys, and ultimately, to improve accuracy and coverage of beach monitoring databases.

Assessing the vulnerability of coastal wastewater infrastructure to climate change

PI: Daniele Spirandelli
This research aimed, with community and agency stakeholders, to identify and map critical factors contributing to wastewater infrastructure vulnerability to a changing climate, particularly sea-level rise and extreme precipitation, and to develop a process that builds adaptive capacity into the system. Results showed groundwater inundation as a significant threat to sewer pipes, and a policy gap analysis identified discontinuities in key components of Hawaiʻi’s current onsite management program between land-use planning efforts and state siting regulations.

Building Resilience to Coastal Hazards and Climate Change in Hawai‘i

NOAA FY16 Coastal Resilience Grant and cooperative agreement with Hawaiʻi Sea Grant in partnership with the State of Hawaiʻi Department of Land and Natural Resources and Office of Planning Project duration: May 2016 – April 2019 Questions? Brad Romine:  romine@hawaii.edu ...

Coastal Ocean Hawaiʻi Acidification Monitoring Network (COHAMN) and carbonate mineral dissolution study

PI: Eric DeCarlo
This project is part of a long-term, ongoing effort to record carbon dioxide concentrations in multiple coral reef settings, producing the longest continuous CO2 record in the world from a coral reef environment, and has illustrated that time series data are critical to understanding and quantifying reef contributions to global carbon cycling. Results so far show that, currently, Hawaiian coastal waters largely release CO2 to the atmosphere, but with elevated carbon dioxide that is absorbed, models show that tropical reefs will be net dissolving by the mid-21st century.

Collaborative investigation of hydraulic and geochemical connectivity between wastewater and land-use and the oceanic waters of Kāneʻohe Bay, Oʻahu

PI: Craig Glenn
This project examined the environmental and health risks of wastewater leakage from on-site sewage disposal systems, by assessing the hydraulic and geochemical connectivity between wastewaters and ocean waters of Kāneʻohe Bay using field studies and pioneering thermal infrared imaging mounted on unmanned aerial vehicles (UAVs). The remote sensing enabled the team to produce high-resolution maps of groundwater and wastewater leakage from local septic systems into waters of the Kahaluʻu watershed and Kānaʻohe Bay. A local-scale model was developed from sixteen months of data that will help inform remediation strategies to address wastewater leakage problems in the area.

Collaborative investigation of hydraulic and geochemical connectivity between wastewaters and other land-uses and the ocean waters of Waialua Bay, Oʻahu

PI: Craig Glenn
This project assesses the hydraulic and geochemical connectivity between on-site sewage disposal system wastewaters and the oceanic waters around the greater Waialua Bay area, Oʻahu, to help develop a more complete understanding of the environmental and health risks of wastewater leakage.

Coral reef CO2 variations at the Coastal Ocean Hawaiʻi Acidification Network (COHAMN): Impact of basin scale oceanographic forcing

PI: Eric DeCarlo
This project continues the decade-old MAPCO2 buoy program at four coral reef sites around Oʻahu, measuring CO2 in the atmosphere and dissolved in seawater as well as other parameters relevant to CO2 biogeochemistry, as part of an ongoing global CO2 monitoring program.

Do seawalls lower property values?

PI: John Lynham
This work examined the economic consequences of a strategy commonly used in years past of building sea walls to protect property threatened by increased coastal erosion. Based on a technique previously used successfully by the authors in San Diego, CA, the researchers examined property sales on Oʻahu for the last 30 years and combined this with locations of seawalls built over those years. They found that while properties with coastal armoring maintain their value, there is evidence that neighboring properties show a decrease in value with time.

Effects of watershed restoration to traditional Hawaiian land use practices on health of nearshore coral reef ecosystems

PI: Robert Toonen
Reimplementation of traditional practices in the Heʻeia ahupuaʻa, in addition to invasive mangrove removal, has been predicted to support improvements to the coastal ecosystems of Kānoʻohe Bay. This study will examine effects on water quality and changes to coral reef health, in response to restoration efforts.

Enabling real-time predictive modeling of microbial pathogen risk along the Honolulu shoreline

PI: Craig Nelson
This project generates a real-time predictive model of microbial pathogen risk for the south shore of Oʻahu, an area with some of the highest instances of recreational waterborne disease in the U.S. Ideally, the model will be easily applied and interpreted by health agencies for the benefit of the general public.

Fish Flow: Filling the gap between spawning and settlement

PI: Brian Bowen
This project aimed to track reef fish, using their genetic data, from where they spawned as larvae to where they settle on the reef, as a direct measure of population connectivity. Engaging student volunteers, the research team collected over 1500 samples of three target species across the Hawaiian islands. Using advanced genetic technology and computer-aided population connectivity texts, the team generated maps that illustrate that most adult reef fish in Kāneʻohe Bay originate from neighboring East Oʻahu reefs rather than from inside the bay, useful information for appropriate managers.

Frequently Asked Questions

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data FAQ What can King Tides tell us about future sea level rise? King Tides (the highest high tides ...

Growth optimization and survival of the bleaching-resistant coral genus Pavona for reef restoration in Hawaiʻi

PI: Peter Marko
These researchers are aiding in bleached coral-reef restoration efforts by experimentally determining optimal nursery growth conditions for the stress-tolerant coral genus Pavona and evaluating the role of colony size and morphology variation on out-planted coral survival at restoration sites.

Harnessing environmental DNA for healthy reefs

PI: Brian Bowen
This study monitors the health of coral reefs by using environmental DNA collected from waters around the reefs to identify which species are present, including cryptic and hidden ones, and to track the overall biodiversity on reefs in response to environmental stressors.

Hawai‘i and Pacific Islands King Tides Project

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data Check out our new and improved photo submission platform!Sign up here to stay up to date and receive additional ...

Hawaiian Islands Sentinel Site Cooperative — About

About the Cooperative Sentinel Sites Featured Projects Partners Resources About the Cooperative The Hawaiian Islands Sentinel Site Cooperative (HISSC) is a collection of four priority sites across the Hawaiian Islands designated by the National Oceanic and Atmospheric Administration (NOAA) as ...

Hawaiian Islands Sentinel Site Cooperative — Featured Projects

About the Cooperative Sentinel Sites Featured Projects Partners Resources Featured Projects Erosion Hot Spot Mapping: Sedimentation from erosion is one of the largest threats to coral reef health. Coral reefs buffer shorelines against waves, storms, floods, and impacts from sea-level ...

Hawaiian Islands Sentinel Site Cooperative — Partners

About the Cooperative Sentinel Sites Featured Projects Partners Resources Partners Government Partners NOAA Office for Coastal Management NOAA National Geodetic Survey NOAA Center for Operational Oceanographic Products and Services NOAA Pacific Islands Fisheries Science Center NOAA National Environmental Satellite, Data, ...

Hawaiian Islands Sentinel Site Cooperative — Resources

About the Cooperative Sentinel Sites Featured Projects Partners Resources Resources Data & Monitoring Nā Kilo Honua o Heʻeia Heʻeia National Estuarine Research Reserve Smart Coastlines Tools & Visualization Hawaiʻi Sea Level Rise Viewer NOAA Sea Level Rise Viewer Digital Coast ...

Hawaiian Islands Sentinel Site Cooperative — Sentinel Sites

About the Cooperative Sentinel Sites Featured Projects Partners Resources Sentinel Sites The HISSC includes four priority sites: Midway Atoll and French Frigate Shoals in the Papahānaumokuākea Marine National Monument; He‘eia watershed on the island of O‘ahu; and the Kona Coast ...

Hehihehi management for microbial-mediated sediment removal in fishponds

PI: Kiana Frank
This study employs the modern tools of microbiology to examine the efficacy of a traditional management tool applied to today’s fishpond restoration efforts. The researcher is examining whether microbes may decompose pond-clogging sediment faster if aided by hehihehi, the traditional practice of stomping and mixing of the fishpond sediment.

How to Participate

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data  How to Participate To submit a photo and observations please visit our Hawai'i and Pacific Islands King Tides ...

How to Participate

About the Project What is a Community Vulnerability Assessment? How to Participate Recent News & Upcoming Events How to Participate Who should participate in the West Kauaʻi Community Vulnerability Assessment (WKCVA)? Anyone who lives or works on the west side is ...

Impacts of climate changes on a native and an invasive Hawaiian plant using a newly developed Intelligent Plant growing System (IPS)

PI: Camilo Mora
This study uses a previously-developed, affordable Intelligent Plant growing System (IPS) that employs automation technology to control climatic conditions precisely. For this project, the system will be applied to assess the viability of plants under multiple co-occurring climatic changes and prepare managers for future decision-making to cope with agricultural and vegetation issues as the climate shifts.

Integrating climate science with local knowledge through community vulnerability assessment on Kauaʻi

PI: Daniele Spirandelli
This study examines the opportunities and challenges of integrating coastal resilience into local community plans, using the County of Kauaʻi’s efforts as a case study. Researchers will combine broader climate science risk information with local knowledge to support statewide goals to prepare counties for future climate hazards.

Integration of next-generation sequencing into traditional Hawaiian practices to improve management and restoration of fishponds

PI: Robert Toonen
With Hawaiian fishponds as models of sustainable aquatic resource management, this study uses two important crab species, Portunus sanguinolentus hawaiiensis and Scylla serrata, to explore whether fishponds are self-seeding, importing, or exporting species, and whether traditional harvest practices continue to be viable. Early results show a broad diversity of crab sizes, with a possibility of tagging and tracking crabs outside the fishpond, as well as within.

Investigating the origin and impact of sedimentation on the health of Hawaiian mesophotic reefs for sustainable coastal development

PI: Robert Toonen
This project continues collecting data from mesophotic zones (30-180 m depths) around Oʻahu and West Maui to update models and develop predictive maps of coral and invasive algae distribution, in order to help managers and policymakers choose best strategies for coastal development and runoff control to protect these vulnerable low-light ecosystems.

Land-based pollutants in herbivorous reef fishes on Hawaiian reefs

PI: Megan Donahue
This work compares concentrations of metal pollutants in reef fish muscle tissue collected at several sites suffering, to different degrees, from contamination due to urban runoff into watersheds and coastal waters. The researchers aim to identify species and locations most impacted and aid communities to minimize the effects of land-based pollutants on coral reefs.

Longitudinal assessment: Our Project in Hawaiʻi’s Intertidal (OPIHI)

PI: Kanesa Seraphin
This project revisited the Hawaiian intertidal zone, last studied over a decade ago, to document, monitor, and assess changes in species compositions due to factors like climate change, coastal development, and the spread of invasive species. The project trained and mentored undergraduate students as interns, for college credit, gaining important, required hands-on research experience. By engaging these students as well as community members in this place-based research, 48 comprehensive surveys were completed across the state, with preliminary results suggesting the spread of invasive algae and changes to water quality.

Microbial biogeochemical cycling across a chronosequence of mangrove introductions across Hawaiʻi

PI: Rosanna Alegado
Invasive mangroves harm Hawaiian coastal ecosystems, choking native plants, providing footholds for invasives, and generating leaf litter mounds inedible to Hawaiian species. This study investigates whether microbial communities can evolve to tackle the detritus and examines the resilience of our coastal ecosystems to mangrove invasion.

Mitigating climate change impacts: What drives thermal resiliency in Hawaiʻi’s coral reefs?

PI: Ruth Gates
This study aimed to understand the biology and physiology of corals, their symbiotic algae, and microbial communities that underpin different responses to bleaching events, why some coral colonies survive bleaching and others do not. Thermal resilience was tested in four coral species important to Hawaiʻi, examining the role of morphology, tissue thickness, and behavior of bacterial communities in bleaching recovery. Results showed that after two weeks at high heat, rice coral (Montipora capitate) was most resistant to bleaching, although all four species returned to normal after four weeks of recovery time. Most susceptible to bleaching was the lace coral (Pocillopora acuta), which has the thinnest tissues.

Our Project In Hawaiʻi’s Intertidal (OPIHI): Examining change over time

PI: Joanna Philippoff
OPIHI, Our Project in Hawaiʻi’s Intertidal, continues a long-term effort to expand knowledge of the vulnerable intertidal zone across Hawaiʻi, engaging students and communities in collecting meaningful data used to characterize whether and how intertidal organisms’ abundance and diversity is changing over time.

Podcast #2: Loko iʻa

Meet Dr. Rob Toonen and Kaleonani Hurley and hear about their study of historical harvesting practices of crab populations in Hawaiian fishponds (or loko i'a) and the applicability to today's management practices. Read more about their project here ...

Predicting and mapping Hawaiian mesophotic coral ecosystems for sustainable coastal development

PI: Robert Toonen
This study sought to address our fundamental lack of knowledge regarding vulnerable low-light, mesophotic coral ecosystems (at depths of 30-180 m) in order to better manage impacts from invasive species, coastal development, and exploration. By using statistical modeling, combined with machine learning, researchers created predictive maps to illustrate the distribution of mesophotic reefs and invasive algae across the main Hawaiian Islands. They found that all islands had some stretches of coastline identified as highly susceptible to invasion of the green alga Avrainvillea amadelpha, in both shallow and mesophotic depths.

Predicting Hawaiʻi water demand under climate change

PI: Michael Roberts
This project studied how climate change may affect future water demand on Oʻahu, focusing on variations in temperature, precipitation, and prevailing climatic conditions. Results imply that microclimates play an important role in demand, with the hot and dry area households using typically 100 gallons more per day than those in cooler, wetter aras. Using water billing data cross-referenced with fine-scale weather data, a model was developed that estimates the growth of Oʻahu aquifer yields needed to satisfy possible shifts in demand (up to 50% increase) under different climate scenarios, or alternatively, the price increases necessary to limit consumption levels.

Rapid Response: Application of a qPCR-based test for Enterococci as a rapid beach management tool in Hawaiʻi

PI: Marek Kirs
The goal of this project was to design a rapid, simple, molecular-based water quality test that authorities can easily apply on Hawaiian beaches to increase hazard resilience of coastal communities. Standard coastal water quality testing techniques require 24-48 hours of culturing Enterococci bacteria, which often gives falsely high readings in Hawaiʻi from environmental sources. This newly developed method uses a specifically human-sewage-borne pathogen, Bacteroides, detected by rapid molecular tests, and is proving to give efficient and accurate detection of contamination to provide more timely notice and better protect public health.

Recent News & Upcoming Events

About the Project What is a Community Vulnerability Assessment? How to Participate Recent News & Upcoming Events  Recent News & Upcoming Events West Kaua`i Potluck Celebration (12/09/19) Please join us on December 9th from 5:30-8:00pm for a gathering and potluck celebration ...

Source tracking coastal groundwater and runoff contamination with microbial genomics and dissolved organic fluorometry

PI: Craig Nelson
This project focused on using new techniques of microbial genomics and fluorescent characterization of organic matter to track sources of groundwater contamination in several important Hawaiian watersheds, in order to provide tools to protect streams, groundwater, and coastal ecosystems. The high density of cesspools in Hawaiʻi is a potentially significant source of contamination to streams and coral reefs, but it is currently prohibitive to identify contamination sources. For this project, hundreds of water samples from Oʻahu, Maui, and Hawaiʻi have been collected and are being characterized to develop microbial source tracking and better testing techniques.

test

About the Project What is a Community Vulnerability Assessment? How to Participate Recent News & Upcoming Events What is a Community Vulnerability Assessment? Community members are intimately familiar with areas that are vulnerable to natural hazards in places where they live, ...

The role of sponges in nitrogen cycling in Kāneʻohe Bay, Oʻahu

PI: Brian Popp
This study focused on quantifying respiration, pumping rates, and chemical reactions of an invasive sponge, Mycale grandis, to understand the species’ impacts on nitrogen cycling in the coastal environment of Kāne‘ohe Bay, whether adding or subtracting usable nitrogen from the system. Researchers found that the M. grandis sponge can pump 83 times its own volume of water per day, giving its associated microbial communities abundant opportunity to perform nitrification, converting ammonia to forms of nitrogen oxides unusable to algae. The rapid nitrogen transformations with the high pumping rates of these sponges means this invasive species may play a significant role in nitrogen concentrations in the bay.

The role of surface and groundwater inputs in driving water quality in Kāneʻohe Bay, Oʻahu

PI: Henrietta Dulai
The goal of this project was to identify submarine groundwater discharge locations and quantify groundwater and its derived nutrient flow into Kāneʻohe Bay, particularly as it varies with wet and dry seasonal cycles. The researchers found that most freshwater in nearby coral reefs derives from streams during the wet season, but during the dry season, input from groundwater increases 150%. These results have led to maps with quantification of groundwater discharge, and measurements of nutrient fluxes have identified several watershed hotspots of wastewater contamination.

Video Tutorials and Resources

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data Video Tutorials Resources Add King Tide photo entry form to smart phone home screen Add website to home ...

West Kauaʻi Community Vulnerability Assessment

About the Project What is a Community Vulnerability Assessment? How to Participate Recent News & Upcoming Events Questions? Daniele Spirandelli: danieles@hawaii.edu or call (808) 956-6866 Ruby Pap: rpap@hawaii.edu or call (808) 241-4183 West Kauaʻi Community Vulnerability Assessment Final Report Mahalo nui ...

West Maui wave run-up forecasts

PI: Douglas Luther
This project plans to develop short-term forecast models of wave-driven inundation “run-up” events for West Maui, to help managers, emergency management personnel, and the public cope with the increasing hazards of flooding events, and associated erosion, driven by wave activity superimposed on rising sea levels.

What is a Community Vulnerability Assessment?

About the Project What is a Community Vulnerability Assessment? How to Participate Recent News & Upcoming Events What is a Community Vulnerability Assessment? Community members are intimately familiar with areas that are vulnerable to natural hazards in places where they live, ...

What is a King Tide?

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data What is a King Tide? King Tides are the highest astronomical tides of the year The scientific term ...

When Are King Tides?

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data When June 5 & June 6, 2020 July 3 & July 4, 2020 To find the best day ...

Why?

About the Project What is a King Tide? How to Participate When Why Video Tutorials and Resources FAQ Explore Photos and Data Why? Documenting King Tides helps researchers, decision makers, and communities better understand and prepare for sea level rise.  We ...
IN THIS SECTION

Learn more about the Coast and Climate Science

CONTACT

Center for Coastal and Climate Science and Resilience
2525 Correa Road, HIG 238
Honolulu, HI 96822
Phone: (808) 956-3013

Bradley Romine, PhD
Coastal Processes Specialist
romine@hawaii.edu

OUR PATTERNS
Center of Excellence Sidebar Pattern

Each pattern represents a Center of Excellence. Learn more about the cultural connections and meanings behind them.